The /bigquery command enables you to manage and analyze large datasets in Google BigQuery. Perfect for:

  • Running SQL queries
  • Analyzing large datasets
  • Managing data warehouses
  • Creating reports
  • Data exploration

Basic Usage

Use the command to interact with BigQuery:

/bigquery run query "SELECT * FROM dataset.table LIMIT 10"
/bigquery list all datasets in project my-project-id
/bigquery show tables in dataset analytics

Key Features

Query Execution

  • Run SQL queries
  • Get query results
  • Use standard SQL
  • Handle large datasets
  • View query costs

Project Management

  • List projects
  • Access project data
  • Navigate datasets
  • View permissions

Dataset Operations

  • List datasets
  • Create datasets
  • View dataset properties
  • Manage locations

Table Management

  • List tables
  • View table schemas
  • Query table data
  • Check table types

Example Commands

Run Query

/bigquery in project analytics-prod run "SELECT COUNT(*) FROM sales.transactions WHERE date > '2024-01-01'"

List Projects

/bigquery show all my projects

List Datasets

/bigquery list datasets in project data-warehouse-prod

Show Tables

/bigquery show all tables in dataset customer_data

Complex Query

/bigquery query "SELECT customer_id, SUM(amount) as total FROM sales.orders GROUP BY customer_id HAVING total > 1000"

Get Query Results

/bigquery get results for job ID job_12345 in project analytics

SQL Syntax

BigQuery supports standard SQL:

  • SELECT, FROM, WHERE
  • GROUP BY, ORDER BY
  • JOIN, UNION
  • Window functions
  • CTEs (Common Table Expressions)

Table References

Use fully qualified names:

  • project.dataset.table
  • dataset.table (uses default project)
  • Backticks for special characters: `my-project.my_dataset.table`

Tips

  • Use LIMIT to preview data
  • Check totalBytesProcessed for query costs
  • Use useLegacySql: false for standard SQL
  • Results are paginated for large datasets

The /bigquery command enables you to manage and analyze large datasets in Google BigQuery. Perfect for:

  • Running SQL queries
  • Analyzing large datasets
  • Managing data warehouses
  • Creating reports
  • Data exploration

Basic Usage

Use the command to interact with BigQuery:

/bigquery run query "SELECT * FROM dataset.table LIMIT 10"
/bigquery list all datasets in project my-project-id
/bigquery show tables in dataset analytics

Key Features

Query Execution

  • Run SQL queries
  • Get query results
  • Use standard SQL
  • Handle large datasets
  • View query costs

Project Management

  • List projects
  • Access project data
  • Navigate datasets
  • View permissions

Dataset Operations

  • List datasets
  • Create datasets
  • View dataset properties
  • Manage locations

Table Management

  • List tables
  • View table schemas
  • Query table data
  • Check table types

Example Commands

Run Query

/bigquery in project analytics-prod run "SELECT COUNT(*) FROM sales.transactions WHERE date > '2024-01-01'"

List Projects

/bigquery show all my projects

List Datasets

/bigquery list datasets in project data-warehouse-prod

Show Tables

/bigquery show all tables in dataset customer_data

Complex Query

/bigquery query "SELECT customer_id, SUM(amount) as total FROM sales.orders GROUP BY customer_id HAVING total > 1000"

Get Query Results

/bigquery get results for job ID job_12345 in project analytics

SQL Syntax

BigQuery supports standard SQL:

  • SELECT, FROM, WHERE
  • GROUP BY, ORDER BY
  • JOIN, UNION
  • Window functions
  • CTEs (Common Table Expressions)

Table References

Use fully qualified names:

  • project.dataset.table
  • dataset.table (uses default project)
  • Backticks for special characters: `my-project.my_dataset.table`

Tips

  • Use LIMIT to preview data
  • Check totalBytesProcessed for query costs
  • Use useLegacySql: false for standard SQL
  • Results are paginated for large datasets